94060

B. Sc. (Hons.) Mathematics 5th Semester Old/New Scheme Examination – February, 2022 GROUPS AND RINGS

Paper: BHM 382

Time: Three Hours]

[Maximum Marks: 60

Before answering the question, candidates should ensure that they have been supplied the errect and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 9 (Section – V) is compulsory. All questions carry equal marks.

SECTION - I

 (a) Prove that a necessary and sufficient condition for a non-empty finite subset H of group (G, .) to be a subgroup is that H must be closed with respect to multiplication.

- (b) State and prove Lagrange's theorem for finite groups.
- 2. (a) If G is the additive group of integers and H is the subgroup of G obtained on multiplying the elements of G by 4, find the index of H in G.
 - (b) Prove H is a normal subgroup of GiffxHx⁻¹ = H for all x ∈ H.

SECTION - II

- 3. (a) State and prove Fundamental theorem on Homomorphism of Groups. 6
 - (b) If G is a finite abelian group of order n and m is a positive integer such that (m, n) = 1 then show that f: G → G defined by f(x) = x^m is anautomorphism.
- 4. (a) Let Z(G) be the centre of a group G. If G/Z is cyclic, then prove that G is abelian.6
 - (b) If $S = \{1, 2, 3, 4, 5, 6, 7\}$ and f = (1, 3), g = (2, 4, 6), show that $f \circ g = g \circ f$.

SECTION - III

5. (a) Show that centre of a ring R is a subring of R. 6

94060-45 (P-4)(Q-9)(22)

P. T. O.

94060- -(P-4)(Q-9)(22)

(2)

- (b) Prove that every field is a principal ideal ring.
- 6. (a) Prove that every homomorphic image of a ring R is isomorphic to some quotient ring.
 - (b) An ideal S of a commutative ring R with unity is maximal iff R/S is a field.

SECTION - IV

- 7. (a) The ring of Gaussian integers is an Euclidean domain. 6
 - (b) Show that every non-zero prime ideal of a principal ideal domain is maximal.
- **8.** (a) If F is a field, then F[x] is a principal ideal ring. 6
 - (b) Show that if a is an irreducible element of a unique factorization domain R then a must be prime.

SECTION - V

(Compulsory Question)

- 9. (a) Find the principal ideal generated by 3, in the ring 12 of integers.
 - (b) Show that the mapping $f: C \to C$ defined by f(a + ib) = a - ib is a homomorphism.

- (c) Prove that the product of two units $a, b \in R$ is also a unit of R.
- (d) Let $G = \{1, 2, 3, 4\}$ be the group w.r.t. multiplication modulo 5. Find order of each element.
- (e) Prove that every group of prime order is cyclic.
- Prove that identity mapping is the only inner automorphism for an abelian group.

P. T. O.